Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation.
نویسندگان
چکیده
How vertebrate blood vessels sense acute hypoxia and respond either by constricting (hypoxic vasoconstriction) or dilating (hypoxic vasodilation) has not been resolved. In the present study we compared the mechanical and electrical responses of select blood vessels to hypoxia and H2S, measured vascular H2S production, and evaluated the effects of inhibitors of H2S synthesis and addition of the H2S precursor, cysteine, on hypoxic vasoconstriction and hypoxic vasodilation. We found that: (1) in all vertebrate vessels examined to date, hypoxia and H2S produce temporally and quantitatively identical responses even though the responses vary from constriction (lamprey dorsal aorta; lDA), to dilation (rat aorta; rA), to multi-phasic (rat and bovine pulmonary arteries; rPA and bPA, respectively). (2) The responses of lDA, rA and bPA to hypoxia and H2S appear competitive; in the presence of one stimulus, the response to the other stimulus is substantially or completely eliminated. (3) Hypoxia and H2S produce the same degree of cell depolarization in bPA. (4) H2S is constitutively synthesized by lDA and bPA vascular smooth muscle. (5) Inhibition of H2S synthesis inhibits the hypoxic response of lDA, rA, rPA and bPA. (6) Addition of the H2S precursor, cysteine, doubles hypoxic contraction in lDA, prolongs contraction in bPA and alters the re-oxygenation response of rA. These studies suggest that H2S may serve as an O2 sensor/transducer in the vascular responses to hypoxia. In this model, the concentration of vasoactive H2S in the vessel is governed by the balance between endogenous H2S production and its oxidation by available O2.
منابع مشابه
Sustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist
Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...
متن کاملThiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing.
H2S derived from organic thiol metabolism has been proposed serve as an oxygen sensor in a variety of systems because of its susceptibility to oxidation and its ability to mimic hypoxic responses in numerous oxygen-sensing tissues. Thiosulfate, an intermediate in oxidative H2S metabolism can alternatively be reduced and regenerate H2S. We propose that this contributes to the H2S-mediated oxygen...
متن کاملThe Interaction between Trolox and 4,4’-diisothiocyanatostilbene-2,2’-disulfonic Acid on Hypoxic Pulmonary Vasoconstriction in the Isolated Rabbit Lung
Background: The mechanism of hypoxic pulmonary vasoconstriction (HPV) is still debatable. It has been proposed that reactive oxygen species (ROS) might be involved in HPV. However, there is no special transporter for superoxide anion in the cell membrane and it may release from the cells via anion exchanger. Therefore, the aim of this study was to investigate the interaction of ROS and anion ex...
متن کاملEvidence mounts that nitrite contributes to hypoxic vasodilation in the human circulation.
Hypoxic vasodilation is a conserved physiological response to hypoxia that matches blood flow and oxygen delivery to tissue metabolic demand. This fundamental physiological process has been characterized for 100 years since the initial description by Roy and Brown1 in 1880. Hypoxic vasodilation requires a sensor mechanism that can detect a divergence in the normal relationship between delivered...
متن کاملHydrogen sulfide mediates hypoxic vasoconstriction through a production of mitochondrial ROS in trout gills.
Hypoxic pulmonary vasoconstriction (HPV) is an adaptive response that diverts pulmonary blood flow from poorly ventilated and hypoxic areas of the lung to more well-ventilated parts. This response is important for the local matching of blood perfusion to ventilation and improves pulmonary gas exchange efficiency. HPV is an ancient and highly conserved response, expressed in the respiratory orga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 20 شماره
صفحات -
تاریخ انتشار 2006